Mobile Surveys for Kids

MAKING SURVEYS G-RATED

Brett Simpson
Vice President, Sampling Science & Strategy
Millward Brown – North America

Supported by
Introduction
The device-agnostic push in the survey research industry is definitely progressing. Our efforts are resulting in improvements in a respondent’s ability to complete surveys on their device of choice and helps researchers break through to some of the hard-to-reach demographics who index high on mobile (millennials, ethnic groups, mothers, etc.). Despite this industry transformation, it is very interesting that our adjustments among young respondents aged 6-17 has been very slow to develop. Especially since this audience is one of the most mobile-forward groups. Marketers of cereal, toys, juice, and other child-focused products need to adjust to the preferences of this audience by ensuring surveys are short, engaging, and mobile-friendly.

Mobile at Home & School
Children experience mobile technology from a very young age and have much less exposure to desktop PCs with a mouse. My two-year old understands how to unlock my iPhone and start her favorite games and she gets confused with devices that lack the touch-screen capability. She is even savvy enough to bypass ads with ease to resume Cut-the-Rope. Pew also notes that kids age 12-17 are more likely than the adult population (18+) to have access to the Internet on a mobile device (74% vs. 55%)

<table>
<thead>
<tr>
<th>Age</th>
<th>Internet Access</th>
<th>Mobile Internet Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 18+</td>
<td>87%</td>
<td>55%</td>
</tr>
<tr>
<td>Age 12-17</td>
<td>95%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Kids are also exposed to mobile devices and other forms of technology within their education experience. Marc Prensky has written & presented extensively on the disconnection between education systems and a child’s need and interest in technology. His paper titled Digital Natives, Digital Immigrants positions children as the first generation who grew up using technology. They are accustomed to an endless amount of information at their fingertips, prefer graphics and games, and have minimal patience for step-by-step logic. The iPhone is a good example, a complex device that comes without a manual. Children prefer to pick up a new device and learn to navigate through their own experience, while many adults desire a tutorial or manual to learn. These types of disconnects create a divide between teachers and students.

But a shift is underway. Schools and educators have adapted to better meet the needs of children. First-grade classrooms now have iPads loaded with software like Raz-kids that read to children at first, but then switches to a self-reading phase once the child reaches the appropriate skill-level. Smart Boards and Clicker systems enable a more interactive experience for the teacher, class, and child, allowing students to provide answers and see real-time analysis for the class as a whole. GoNoodle is a website used by schools in Colorado to give kids a break between learning sessions via activities and stretching. Collectively, this shift is helping to break through to children through the use of foundational technology within learning programs. Marc Prensky calls this “Edutainment”, which sounds very similar to our survey-research term “Gamification”. This shift is very pertinent to us, as it speaks to our need to find ways of improving the survey experience through relevant devices and a more engaging interaction.
Our Focus
Millward Brown has focused extensively in recent years on enhancing our surveys and research designs to be
device agnostic, mobile friendly, and more engaging³. Many of our partners and competitors have also focused
on this space⁴. Despite this industry focus, a review of several child studies shows that improvements to length
and design are needed. The specs below were a random sampling of kids surveys provided by Lightspeed-
GMI and demonstrate the need for shorter and mobile-friendly designs.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Age Range</th>
<th>Duration</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movies</td>
<td>7-17</td>
<td>20 min</td>
<td>PC-Only</td>
</tr>
<tr>
<td>Snacks</td>
<td>8-17</td>
<td>Diary</td>
<td>Smartphone</td>
</tr>
<tr>
<td>Gaming</td>
<td>13-17</td>
<td>15 min</td>
<td>All devices</td>
</tr>
<tr>
<td>Chocolate</td>
<td>8-11</td>
<td>30 min</td>
<td>PC-Only</td>
</tr>
<tr>
<td>Toys</td>
<td>0-12</td>
<td>30 min</td>
<td>PC-Only</td>
</tr>
<tr>
<td>Breakfast</td>
<td>6-11</td>
<td>8 min</td>
<td>All devices</td>
</tr>
</tbody>
</table>

We embarked on some research-on-research to identify ways to improve surveys for kids, ways to enhance
the mobile experience, and to contrast what’s appropriate for kids vs. adults. Our work encompassed a
qualitative in-person mobile survey usability test among children, followed by a quantitative evaluation.

Qualitative Sessions
Our qualitative sessions were among 25 Millward Brown employees accompanied with their child age 6-17.
The child completed a 15 minute survey focused on the cereal category. They completed the survey on a
smartphone while we monitored their progress and asked questions about the experience. The following key
findings were observed:

1. **Parents are not concerned with kids using their phone.** Children age 11-17 are fully trusted to use
 the device without fear of either damaging the device or worry of inappropriate content. More
 monitoring takes place with age 6-10 which reduces concerns.
2. **Kids prefer <10 minutes & we should strive for no more than 15 minutes.** Some older kids
 mentioned that anything over 5 minutes would be too long for their preferences.
3. **Age 11-17 mentioned they seldom use computers.** They thought our survey would work equally well
 on a tablet or smartphone, which they use often, but lost interest when considering completion on PC.
4. **Children read all questions and respond very carefully.** Age 6-10 require extensive assistance from
 parents to read text, think through questions, and work through any issues where the child was stuck.
5. **Seemingly easy concepts can be foreign to kids.** Researchers should closely review survey text and
 conduct pilot tests. For example, “Which cereals are different from others?” should be changed to
 “Which of these cereals is more interesting?”.
6. **Testing on mobile is critical to avoid errors.** Proximity of responses to phone navigation was
 problematic. Radial buttons very close to one another created some errors. Large response buttons
 were preferred by children.
7. **Responses need to be different to avoid confusion.** For example, a 5-point taste scale with “doesn’t
 taste good at all” and “doesn’t taste good” didn’t provide the necessary differentiation, which created
 confusion.
8. **Less wording helps kids process information faster.** Long intro statements and response options
 tire and confuse kids. Excessive transition screens and instructions should be avoided.
9. **More engaging question types are easier to grasp.** Questions using imagery, sliders, and other non-
 traditional response-types help improve engagement & are easily understood by all age groups.
10. **Simplified scales are more easily processed.** Fully-anchored scales and scales with 6 or more
 points get to be too much for age 6-10. Scales with star-ratings tend to be much easier to understand.
Various Issues Experienced During Qualitative Sessions:

Proximity of survey navigation to device/browser navigation created issues. Some children attempted to select back/forward in the survey but accidentally touched the browser navigation, creating issues.

The amount of response options, amount of words included per response, and overall question structure created confusion with kids, especially age 6-10.

The question as shown is a better alternative than the original, where we asked what cereals are actually in the house. Qualitative demonstrated how different parent and child cereal preferences are, mostly due to the health factor.

Children, especially age 6-10, were very confused by the term “different” in this question. Parents had to explain what the question meant, sometimes opening the door for biased results based on the parent’s perceptions.
Quantitative Recruitment & Design Approach
We also conducted surveys among children 6-17 from the Lightspeed-GMI panel to better understand response-patterns by age and by device. Completes were split among 80 PCs, 80 tablets, and 80 smartphones and age/gender of children was balanced within each device category. As is our standard protocol when conducting research among kids, we were cautious to meet the guidelines outlined within the Children’s Online Privacy Protection Act of 1998 (COPPA). These guidelines require verifiable parental permission to interview children under the age of 13 online in the US. Although age 13-17 does not require consent, we typically obtain it from the parent regardless. This is our typical approach for recruiting children and it tends to work very well since there are no US child survey panels.

We leveraged interesting question types that featured images with larger and more colorful response buttons to help us better engage with the children.

Do you like this cereal?

Which of these cereals have you seen or heard of? You may pick as many as you like.
Quantitative Findings

Despite an initial belief that survey length would be much longer among young children, the length ended up roughly equivalent by age. Smartphone took slightly longer than PC, which is consistent with some of our Gen Pop work where smartphone tends to take roughly 25% longer. Response rates were consistent by age, but came in higher for tablets and smartphones. We believe the higher response rates on mobile devices are due to high demand and low supply of mobile opportunities on panels.

Most children thought the questions were easy to understand regardless of age or device. Age 6-10 are more likely to receive help from their parents, with slightly more help for tablet and smartphone respondents.

<table>
<thead>
<tr>
<th></th>
<th>Age 6-10</th>
<th>Age 11-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Tablet</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>Smartphone</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Median Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Tablet</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Smartphone</td>
<td>12</td>
<td>11</td>
</tr>
</tbody>
</table>

Ease of Answering Questions / Help from Parents

Questions were really easy to understand
Received help from a parent
The actual results are very consistent across PC, tablet, and smartphone, illustrated below with brand awareness and parent request metrics for 10 brands in our study. We do see a few situations with a significant difference between devices, but there is no pattern to suggest any particular device yields systematically higher or lower ratings overall.

In fact, if a device agnostic design was employed for this category, we would have seen minimal difference with a PC-only design vs. device agnostic design. Our typical North America device agnostic design approach is to permit roughly 80% PC sample, 10% tablet, and 10% smartphone completes. This is generally what we see falling out naturally for many panels and is a composition that we often see in our studies. With this composition, we see that any device-differences get neutralized when we directly compare a PC-only design versus a device agnostic design. This is very reassuring overall. The key take-away is that most brands will see consistency regardless of device and a device-agnostic design will enable a more representative sample but shouldn’t drastically change results versus PC-only designs.
We also explored how kids age 13-18 used different types of scales across all devices. We discovered kids tend to simplify 11-point end-anchored scales down to a 3-point scale. They tend to use the endpoints and the center-point of the scale. We also noticed that 5-point balanced scales tend to result in grouping the lower two response-options and the upper response-options – again, promoting the opportunity for a shorter scale. While this doesn’t suggest that shorter 3-4 point scales will always meet the research need, there may be situations - like when optimizing for mobile - when a 3 or 4-point scale is enough.
Summary

We should strive to improve engagement with kids by making surveys device agnostic, mobile-friendly, shorter than 15 minutes, and using more interesting question-types. Be sure to abide by COPPA guidelines and recognize that parents will play a role in the child’s survey experience, often providing assistance. Extensive testing on mobile is necessary to avoid technical issues and to enhance how each question works on small screens. Anticipate that a moderate amount of mobile coming into the sample will not drastically alter results, although close monitoring is suggested.

We are continuing to explore relevant topics for this audience and encourage more focus by the industry:

- **Survey Incentives** – Because the parent is typically the panel member, children receive no reward for completing the survey. We are contemplating offering different options to the child or parent to increase the child’s interest in participating.

- **Question Types** – Gamification approaches, simplified scales, shorter scales, the use of images, and other options are being considered & tested to improve the level of engagement with children. We are also exploring what approaches are better for age 6-10 vs. 11-17.

- **Device Completion** – Kids certainly would prefer mobile, but their parents are the panel members and are likely to drive the choice of device. We continue to explore the dynamic of parent vs. child and the devices they choose to use with our surveys.

References:

Notes:

- Thank you to Lightspeed-GMI for partnering with Millward Brown on this research-on-research.
- Thank you to Allison Barker for providing extensive materials and information outlining the use of technology within schools.
- Statistical testing was conducted at a 95% confidence level.